1 Fig. 8 shows a cross-section of a car headlight whose inside reflective surface is modelled, in suitable units, by the curve

$$
x=2 t^{2}, y=4 t, \quad-\sqrt{2} \leqslant t \leqslant \sqrt{2} .
$$

$\mathrm{P}\left(2 t^{2}, 4 t\right)$ is a point on the curve with parameter $t$. TS is the tangent to the curve at P , and PR is the line through P parallel to the $x$-axis. Q is the point $(2,0)$. The angles that PS and QP make with the positive $x$-direction are $\theta$ and $\phi$ respectively.


Fig. 8
(i) By considering the gradient of the tangent TS, show that $\tan \theta=\frac{1}{t}$.
(ii) Find the gradient of the line QP in terms of $t$. Hence show that $\phi=2 \theta$, and that angle TPQ is equal to $\theta$.
[The above result shows that if a lamp bulb is placed at Q , then the light from the bulb is reflected to produce a parallel beam of light.]

The inside surface of the headlight has the shape produced by rotating the curve about the $x$-axis.
(iii) Show that the curve has cartesian equation $y^{2}=8 x$. Hence find the volume of revolution of the curve, giving your answer as a multiple of $\pi$.

2 Fig. 3 shows part of the curve $y=1+x^{2}$, together with the line $y=2$.


Fig. 3

The region enclosed by the curve, the $y$-axis and the line $y=2$ is rotated through $360^{\circ}$ about the $y$-axis. Find the volume of the solid generated, giving your answer in terms of $\pi$.

3 Fig. 7 shows the curve BC defined by the parametric equations

$$
x=5 \ln u, y=u+\frac{1}{u}, \quad 1 \leqslant u \leqslant 10 .
$$

The point A lies on the $x$-axis and AC is parallel to the $y$-axis. The tangent to the curve at C makes an angle $\theta$ with AC , as shown.


Fig. 7
(i) Find the lengths $\mathrm{OA}, \mathrm{OB}$ and AC .
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $u$. Hence find the angle $\theta$.
(iii) Show that the cartesian equation of the curve is $y=\mathrm{e}^{\frac{1}{5} x}+\mathrm{e}^{-\frac{1}{5} x}$.

An object is formed by rotating the region OACB through $360^{\circ}$ about $\mathrm{O} x$.
(iv) Find the volume of the object.

4 Fig. 2 shows the curve $y=\sqrt{1+x^{2}}$.


Fig. 2
(i) The following table gives some values of $x$ and $y$.

| $x$ | 0 | 0.25 | 0.5 | 0.75 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 1 | 1.0308 |  | 1.25 | 1.4142 |

Find the missing value of $y$, giving your answer correct to 4 decimal places.
Hence show that, using the trapezium rule with four strips, the shaded area is approximately 1.151 square units.
(ii) Jenny uses a trapezium rule with 8 strips, and obtains a value of 1.158 square units. Explain why she must have made a mistake.
(iii) The shaded area is rotated through $360^{\circ}$ about the $x$-axis. Find the exact volume of the solid of revolution formed.

5 Fig. 4 shows the curve $y=\sqrt{1+\mathrm{e}^{2 x}}$, and the region between the curve, the $x$-axis, the $y$-axis and the line $x=2$.


Fig. 4
(a) Find the exact volume of revolution when the shaded region is rotated through $360^{\circ}$ about the $x$-axis.
(b) (i) Complete the table of values, and use the trapezium rule with 4 strips to estimate the area of the shaded region.

| $x$ | 0 | 0.5 | 1 | 1.5 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ |  | 1.9283 | 2.8964 | 4.5919 |  |

(ii) The trapezium rule for $\int_{0}^{2} \sqrt{1+\mathrm{e}^{2 x}} \mathrm{~d} x$ with 8 and 16 strips gives 6.797 and 6.823 , although not necessarily in that order. Without doing the calculations, say which result is which, explaining your reasoning.

6 Fig. 8 illustrates a hot air balloon on its side. The balloon is modelled by the volume of revolution about the $x$-axis of the curve with parametric equations

$$
x=2+2 \sin \theta, \quad y=2 \cos \theta+\sin 2 \theta, \quad(0 \leqslant \theta \leqslant 2 \pi) .
$$

The curve crosses the $x$-axis at the point $\mathrm{A}(4,0)$. B and C are maximum and minimum points on the curve. Units on the axes are metres.


Fig. 8
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $\theta$.
(ii) Verify that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $\theta=\frac{1}{6} \pi$, and find the exact coordinates of B.

Hence find the maximum width BC of the balloon.
(iii) (A) Show that $y=x \cos \theta$.
(B) Find $\sin \theta$ in terms of $x$ and show that $\cos ^{2} \theta=x-\frac{1}{4} x^{2}$.
(C) Hence show that the cartesian equation of the curve is $y^{2}=x^{3}-\frac{1}{4} x^{4}$.
(iv) Find the volume of the balloon.

